Some new results on inner product quasilinear spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Results on 2-inner Product Spaces

We onsider ”Riesz Theorem” in the 2-inner product spaces and give some results in this field. Also, we give some characterizations about 2-inner product spaces in b-approximation theory. AMS Mathematics Subject Classification (2000): 41A65, 41A15

متن کامل

$C^{*}$-semi-inner product spaces

In this paper, we introduce a generalization of Hilbert $C^*$-modules which are pre-Finsler modules, namely, $C^{*}$-semi-inner product spaces. Some properties and results of such spaces are investigated, specially the orthogonality in these spaces will be considered. We then study bounded linear operators on $C^{*}$-semi-inner product spaces.

متن کامل

SOME NEW RESULTS ON REMOTEST POINTS IN NORMED SPACES

In this paper, using the best proximity theorems for an extensionof Brosowski's theorem. We obtain other results on farthest points. Finally, wedene the concept of e- farthest points. We shall prove interesting relationshipbetween the -best approximation and the e-farthest points in normed linearspaces (X; ||.||). If z in W is a e-farthest point from an x in X, then z is also a-best approximati...

متن کامل

On Reverses of Some Inequalities in n-Inner Product Spaces

In 1964, Gähler 1 introduced the concept of 2-norm and 2-inner product spaces as generalization of norm and inner product spaces. A systematic presentation of the results related to the theory of 2-inner product spaces can be found in the book in 2, 3 and in list of references in it. Generalization of 2-inner product space for n ≥ 2 was developed by Misiak 4 in 1989. Gunawan and Mashadi 5 in 20...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Cogent Mathematics

سال: 2016

ISSN: 2331-1835

DOI: 10.1080/23311835.2016.1194801